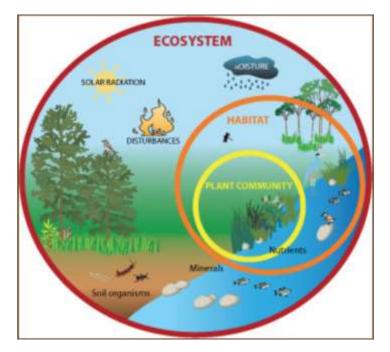


MONASH SUSTAINABLE DEVELOPMENT INSTITUTE

UNACKNOWLEDGED VALUES OF URBAN ECOSYSTEMS: AN ANALYSIS FOR DHAKA CITY

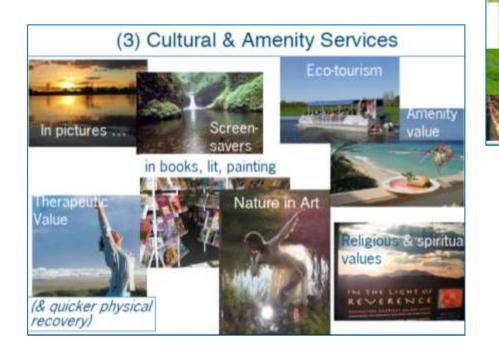
PRESENTER: NAEEMA JIHAN ZINIA DOCTORAL RESEARCHER


August 25, 2017

ECOSYSTEM

"<u>A dynamic complex</u> of plant, animal, and microorganism communities and the nonliving environment interacting as a functional unit" of which <u>humans are an integral part (MA, 2005a)</u>.

Ecosystem services are the <u>benefits (goods and</u> <u>services</u>) that are derived from ecosystem functions which <u>contribute to human well-being</u> directly or indirectly (Costanza et al, 1997; Daily, 1997; de Groot et al, 2002; MA, 2005b; TEEB, 2010a).


ECOSYSTEM SERVICES CONT.

4

ECOSYSTEM SERVICES CONT.

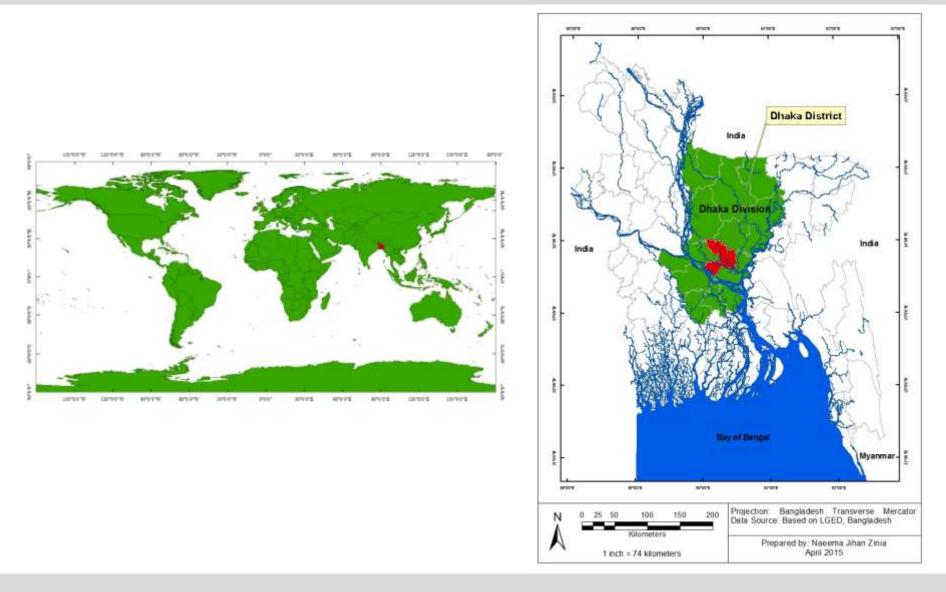
(4) Habitat (supporting) services

Habitat / Biodiversity

90% of species

Other "life support" Services e.g. Nutrient cycling / Bio-geochemical cycling

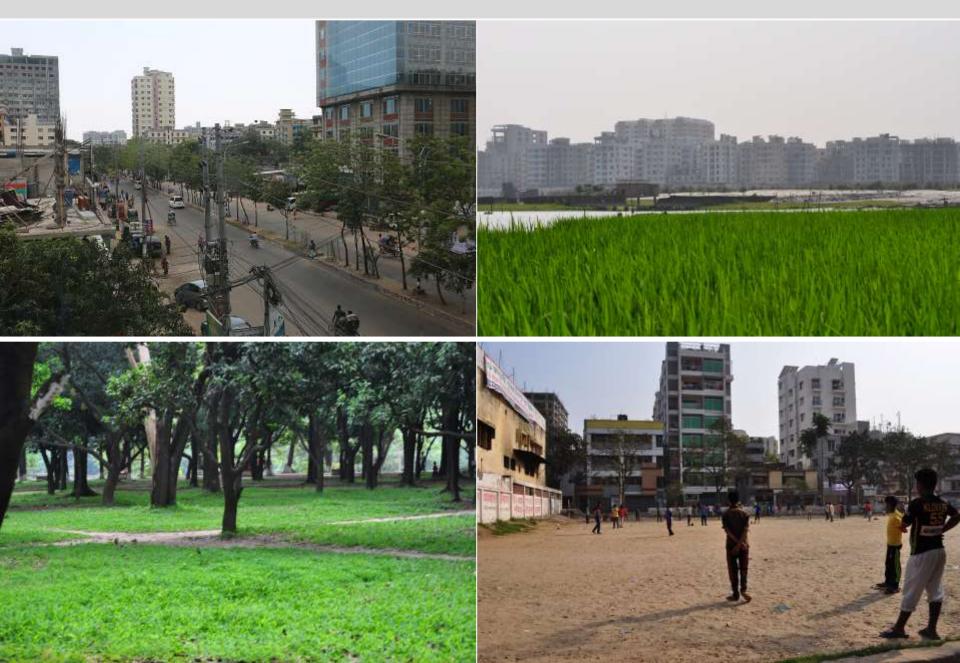
Nursery function



RESEARCH BACKGROUND

- The <u>development process</u> of the <u>Bangladesh delta</u> has gained momentum.
- In its path of progression it faces <u>multi-dimensional</u> <u>challenges</u> related to, among others, population growth, rapid urbanization, land use change and natural hazards compounded with likely climate change.
- Social, economic and environmental aspects, especially in <u>urban areas</u>, are under pressure.
- Dhaka, the capital city of Bangladesh, is the hub of socio-economic and cultural activities of the country.
- As this city is growing, <u>managing its ecosystem</u> <u>services</u> is becoming increasingly complex.

DHAKA: GEOGRAPHIC LOCATION

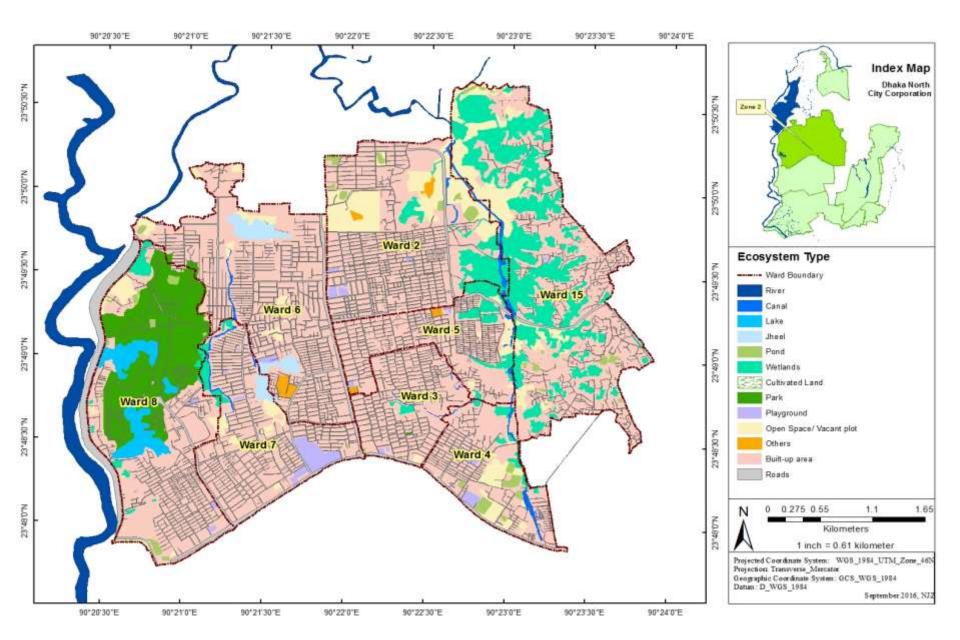


DHAKA: A HIGHLY BUILT UP CITY

DHAKA: URBAN GREEN SPACES

DHAKA: URBAN BLUE SPACES

Contribute to <u>urban ecosystem services management</u> in Dhaka by recommending economically feasible and socially acceptable <u>green adaptation strategies</u>.



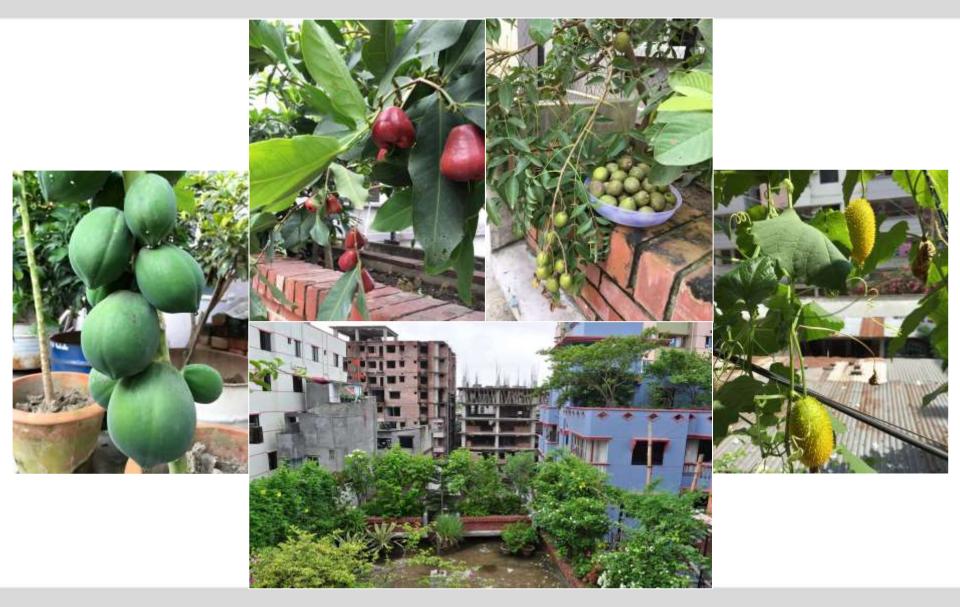
ECOSYSTEMS IN THE STUDY AREA

ECOSYSTEMS IN THE STUDY AREA CONT.

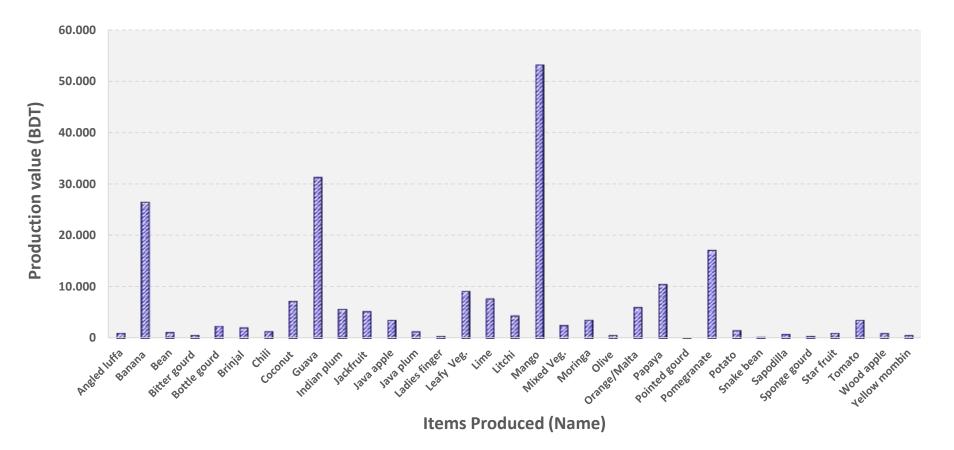
INVENTORY OF ECOSYSTEM SERVICES

Ecosystem Services (ES)		Urban Ecosystems										
		Green spaces				Blue spaces						
		Park/garden	Roadside trees	Cultivated land	Playground	Open space/ vacant plot	Graveyards	Pond	Jheel	Lake	Khal	Wetland
	Crops, Fruits, Vegetables	x		x					x			x
	Fish							x	x	x		x
	Water supply							x	x		x	x
Provisioning ES	Fodder								x		x	x
	Medicinal plants	x										
	Fuel wood	x	x		x	x	x					
	Timber	x	x	x	x	x	x					
	Capturing Particulate matter (PM)	x	x	x	x	x	x					
	Carbon sequestration	x	x	x	x	x	x					
	Microclimate regulation	x	x	x	x	x	x	x	x	x	x	x
	Drainage							x	x	x	x	x
Regulating ES	Flood prevention	x	x	x	x	x	x	x	x	x	x	x
	Strom protection	x	x		x		x	x	x	x	x	x
	Noise abatement	x			x	x	x		x		x	x
	Water purification	x										
	Opportunities for recreation	x	x		x				x		x	
	Cognitive development- Research and education	x										
Cultural ES	Aesthetic information	x								x	x	
	Inspiration for culture and art	x			x			x	x			x
	Religious use				x							
Supporting ES	Nursery service and refugia for resident and migratory birds	x	x			x	x	x	x	x	x	x
	Gene pool/biodiversity protection	x	x			x	x	x	x	x	x	x

EXAMPLE: ECOSYSTEM SERVICES



EXAMPLE: ECOSYSTEM SERVICES CONT.


EXAMPLE: ECOSYSTEM SERVICES CONT.

VALUES OF PROVISIONING SERVICES

Valuation of the produces (fruits and vegetables) from rooftop gardens in the study area

SELECTED REGULATING SERVICES

Climate regulation- Carbon sequestration/ Carbon stock

Influence on air quality- Particulate Matters (PM) capture

TREE MEASUREMENT

TREE MEASUREMENT CONT.

TREE MEASUREMENT CONT.

Number of trees measured in the park 10 sub-plots (20 x 20 meter)

Sub-plot	Mature trees (DBH	Poles (DBH 10- 20	Saplings (DBH <10	Sub-plot total
no.	> 20 cm)	cm)	cm)	trees (no.)
1	44	17	12	73
2	59	16	0	75
3	60	35	39	134
4	41	8	8	57
5	36	16	4	56
6	20	55	28	103
7	64	11	4	79
8	38	15	15	68
9	25	12	13	50
10	37	16	10	63
Total	424	201	133	758

TREE MEASUREMENT CONT.

Number of measured roadside trees 13 sub-plots (30 x 30 meter)

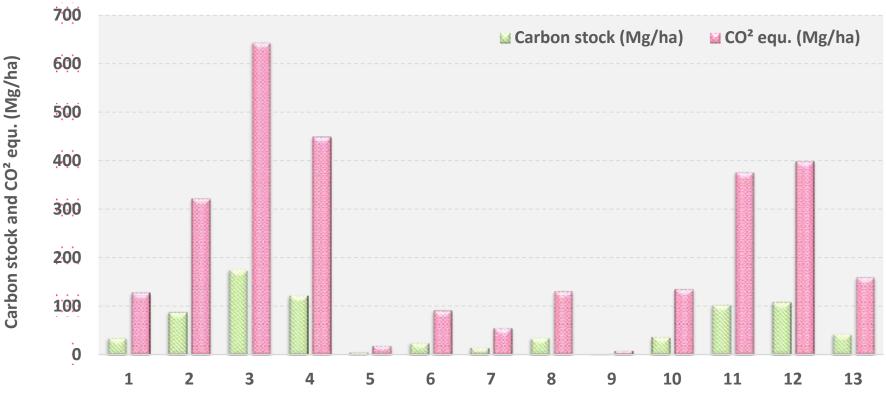
	Sub-plot	Number	of trees		Sub-plot total trees	
Road name	no.	Mature trees	Poles (DBH 10-	Saplings (DBH	(no.)	
		(DBH > 20 cm)	20 cm)	<10 cm)	(110.)	
	1	7	5	4	16	
Zoo road	2	10	18	4	32	
2001080	3	11	3	0	14	
	4	20	5	0	25	
	1	11	3	17	31	
Mirpur road	2	10	4	15	29	
wiii pur Toau	3	8	14	29	51	
	4	10	6	25	41	
	1	0	9	4	13	
Dogum Dokovo	2	7	5	18	30	
Begum Rokeya Swaroni	3	4	2	6	12	
Swarom	4	9	0	0	9	
	5	1	1	3	5	
Total	13	108	75	125	308	

Carbon Stock: Quantity

$\ln(AGB) = -2.289 + 2.649 \ln(DBH) - 0.021 \ln(DBH)^2$

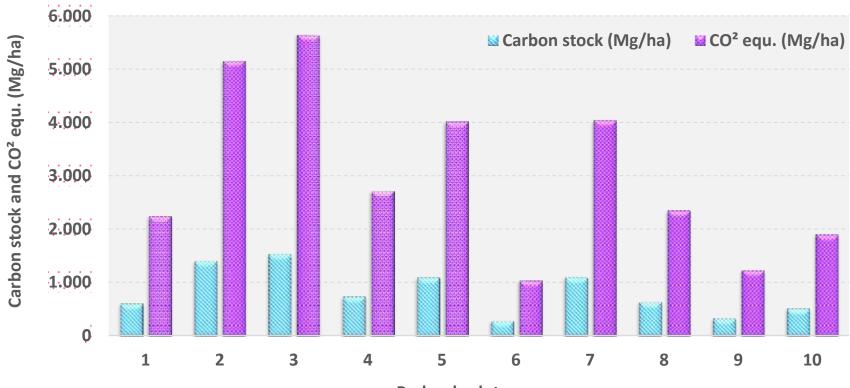
AGB= Above Ground Biomass (kg) DBH= Diameter at Breast Height (cm)

Source: Pearson et al (2005) and Yuen et al (2016)


Carbon Stock = $AGB \times 0.47$

 $CO2 \ equivalent = AGB \times 0.47 \times 3.67$

Source: Alamgir et al (2016)


Total carbon stock and CO2 equ. in the roadside tree of the sub-plots are 798.2 Mg/ha and 2929.3 Mg/ha, respectively.

Roadside sub-plots

Total carbon stock and CO2 equ. in the park trees of the sub-plots are 8283.6 Mg/ha and 30401.0 Mg/ha, respectively.

Park sub-plots

Carbon Stock: Price

Country	Carbon price (USD/Mg of CO2 equ)	Carbon price (BDT/Mg of CO2 equ)
Sweden	150	11,700
Finland	23	1,794

Carbon Stock: Value (Year 2016)

	Swedish price	Finland price
Ecosystems	Value of CO2 equ	Value of CO2 equ
	(USD/ha/year)	(USD/ha/year)
Roadside tree sub-plot		
total	439,388.5	(67,372.9)
Roadside tree sub-plot		
Average	29,880.0	4,581.6
Park tree sub-plot		
total	4,560,143.6	(699,222.0)
Park tree sub-plot		
Average	456,014.4	69,922.2

PM Capture: Price

Method	Abatement Cost (BDT/ha)	Abatement Cost (USD/ha)
Dry sweeping	816,418	10,467
Wet sweeping	3,167,401	40,608
		Source: Rahman et al (2016)

Source: Rahman et al (2016)

PM Capture: Quantity

Pollutant Capture = Pollutant Flux × Area × Time

Pollutant Flux = Deposition Velocity × Concentration of air pollutant

Sources: Lovett, 1994 Nowak, 1994 Jim and Chen, 2008

Units:

Pollutant Capture (g/sec) Pollutant Flux (g/cm2/sec) Area i.e. tree cover (cm2) Time period (sec) Deposition Velocity (cm/sec) Concentration of air pollutant (g/cm3)

PM₁₀ Capture: Quantity

PM₁₀ capture or removal (Mg/year) by trees in the study area

Range	Total removal quantity (Mg/year)			
	Roadside trees	Park trees		
Average	7.4	22.1		
Max	9.6	29.6		
Min	10.6	34.2		

PM₁₀ Capture: Value (Year 2016)

 PM_{10} abatement cost saved by trees in the study area

PM ₁₀ capture Value (mill USD/ha/year) (Dry sweeping)		USD/ha	PM ₁₀ capture Value (mill USD/ha/year) (Wet sweeping)		
Roadside trees	Park trees	Roadside trees	Park trees		
0.08	0.23	0.30	0.90	Average	
0.10	0.31	0.39	1.20	Max	
0.11	0.36	0.43	1.39	Min	

Ecosystems in urban areas play crucial roles in regulating ecological functions, supporting primary production, creating food provision and nonmaterial benefits.

❑ Apart from aesthetics, other benefits are often overlooked as prices are not attached to them.

KEY MESSAGES CONT.

The surveyed rooftop gardens produce USD ~3,500 year⁻¹ worth fruits and vegetables in the study area.

The estimated values for CO₂ equivalent storage are on average USD ~70,000 ha⁻¹ year⁻¹ by park and USD ~4,500 ha⁻¹ year⁻¹ by roadside trees.

The average PM₁₀ abatement cost saved by the park range between USD 0.23-0.90 million ha⁻¹ year⁻¹.

□ Valuation is important!

This study will motivate citizens and policy makers for sustainable urban ecosystem management in Dhaka and similar cities.

DISCUSSION

How to quantify

□ <u>cooling effects</u> generated by ecosystems?

□ <u>drainage services</u> provided by waterbodies?

